|
The Skoda–El Mir theorem is a theorem of complex geometry, stated as follows: Theorem (Skoda,〔H. Skoda. ''Prolongement des courants positifs fermes de masse finie'', Invent. Math., 66 (1982), 361–376.〕 El Mir,〔H. El Mir. ''Sur le prolongement des courants positifs fermes'', Acta Math., 153 (1984), 1–45.〕 Sibony 〔N. Sibony, ''Quelques problemes de prolongement de courants en analyse complexe,'' Duke Math. J., 52 (1985), 157–197〕). Let ''X'' be a complex manifold, and ''E'' a closed complete pluripolar set in ''X''. Consider a closed positive current on which is locally integrable around ''E''. Then the trivial extension of to ''X'' is closed on ''X''. ==Notes== 〔 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Skoda–El Mir theorem」の詳細全文を読む スポンサード リンク
|